

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE										
QUALIFICATION CODE: 07BOSC	LEVEL: 6									
COURSE CODE: ICH602S	COURSE NAME: INORGANIC CHEMISTRY									
SESSION: NOVEMBER 2022	PAPER: THEORY									
DURATION: 3 HOURS	MARKS: 100									

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER										
EXAMINER(S)	DR. EUODIA HESS									
MODERATOR:	PROF HABAUKA KWAAMBWA									

	INSTRUCTIONS
1	Answer ALL the questions.
2	Write clearly and neatly.
3	Number the answers clearly
4	All written work must be done in blue or black ink and sketches can
	be done in pencil
5	No books, notes and other additional aids are allowed

PERMISSABLE MATERIALS

Non-programmable calculators

ATTACHMENTS

- 1. List of useful constants
- 2. Periodic Table

THIS QUESTION PAPER CONSISTS OF 8 PAGES

(Including this front page, list of constants and periodic table)

QUESTION 1: Multiple Choice Questions

[40]

- There are 20 multiple choice questions in this section. Each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.
- 1. Which of the following ranks regions of the electromagnetic spectrum in proper order from highest to lowest frequency.
 - A. radio > x-rays> gamma rays > visible > microwaves
 - B. gamma rays > x-rays > visible > microwaves> radio
 - C. microwaves > gamma rays > x-rays > visible > radio
 - D. x-rays > gamma rays > microwaves > visible > radio
- 2. Which of the following regions of the electromagnetic spectrum has the lowest frequency?
 - A. x-ray
 - B. gamma ray
 - C. ultraviolet
 - D. infrared
- 3. A device emits light at 244.4 nm. What is the frequency of this radiation?
 - A. $1.23 \times 10^{15} \text{ Hz}$
 - B. $8.14 \times 10^{-37} \text{ Hz}$
 - C. $8.14 \times 10^{-19} \text{ Hz}$
 - D. $3.69 \times 10^{26} \text{ Hz}$
- 4. What is the wavelength of a photon that has an energy of $3.097 \times 10^4 \text{ J}$?
 - A. $3.1 \times 10^{13} \text{ nm}$
 - B. 6.42 x 10⁻²¹ nm
 - C. 9.29 x 10²¹ nm
 - D. 6.16 x 10¹² nm
- 5. What is the wavelength of light emitted when the electron in a hydrogen atom undergoes a transition from level n = 8 to level n = 2?
 - A. 1.7×10^{-27} kJ/mol
 - B. $2.57 \times 10^{6} \text{ kJ/mol}$
 - C. 5.11×10^{-19} kJ/mol
 - D. 3.89×10^{-7} kJ/mol
- 6. What is the hybridization of the central atom in a molecule with a tetrahedral molecular geometry?
 - A. sp^2
 - B. sp
 - C. sp^3
 - D. sp^3d

- 7. What is the hybridization of each carbon atom in benzene, C₆H₆?
 - B. sp^2

 - C. sp^3
 - D. sp^4
- 8. For which of the following molecules does the carbon atom have sp^3 hybridization?
 - A. Cl₂CO
 - B. CO
 - C. CS₂
 - D. CH₂Cl₂
- 9. What is the molecular geometry around a central atom that is sp^2 hybridized, has three sigma bonds, and one pi bond?
 - A. trigonal-planar
 - B. trigonal-pyramidal
 - C. square planar
 - D. T-shaped
- 10. Which of the following concerning σ and π bonds is/are correct?
 - A. Pi bonds are formed from unhybridized p orbitals
 - B. Both A and D
 - C. Sigma bonds may only be formed from unhybridized orbitals Pi bonds are formed from unhybridized p orbitals
 - D. A pi bond has an electron distribution above and below the bond axis
- 11. A molecular orbital that decreases the electron density between two nuclei is said to be _____.
 - A. Hybridized
 - B. Bonding
 - C. pi-bonding
 - D. antibonding
- 12. The following valence molecular orbital energy level diagram is appropriate for which one of the listed species?

- D. N_2^{2+}

13. Which molecule will have the following valence molecular orbital energy level diagram?

- A. B₂
- B. Be₂
- C. N₂
- D. O₂

14. Which molecule will have the following valence molecular orbital level energy diagram?

- A. N₂
- B. C₂
- C. O₂
- D. B₂

15. Which of the following correctly describes the states of matter and intermolecular forces?

- A. The change in volume that accompanies the conversion of a liquid to a gas can be very large.
- B. The change in volume that accompanies the conversion of a liquid to a solid is small.
- C. The forces of attraction between molecules in the liquid and solid state correlate with melting point, boiling point, and the energy of phase changes.
- D. All of the above

16. Which one of the following molecules will exhibit dipole-dipole intermolecular forces as a pure liquid or solid?

- A. CS₂
- B. C₂H₂
- C. SiCl₄
- D. NH₃

17. Which of the following bonds can potentially contribute to the formation of a hydrogen bond in a solid or liquid?
A. Ge-H
B. Si-H
C. I-H
D. N-H
18. Hydrogen bonding is present in all of the following molecular solids EXCEPT
A. H ₂ SO ₄
B. CH₃OH
C. HF
D. CH ₃ OCH ₃
19. As pure molecular solids, which of the following exhibit only induced dipole/induced dipole
forces: CO ₂ , CH ₂ Cl ₂ , and SO ₂ ?
A. CO ₂ only
B. CH ₂ Cl ₂ only
C. CO ₂ and CH ₂ Cl ₂
D. SO ₂ only
20. What intermolecular force or bond is primarily responsible for the solubility of carbon
monoxide (CO) in water?
A. dipole/induced dipole force
B. dipole-dipole force
C. hydrogen bonding
D. ion-induced dipole force
SECTION B: [60]
There are THREE questions in this section. Answer all questions. Show clearly, where necessary, how you arrive at the answer as all working will carry marks.
Question 1 [22]
1.1 Name the species and give the valence electron counts to the metal atoms in: (10)
a) [Fe(CO) ₅]
b) [Mn ₂ (CO) ₁₀
c) [V(CO) ₆]
d) [Fe(CO) ₄] ²⁻
e) Rh(Me)(CO) ₂ (PPh ₃)]
1.2 What hapticities are possible for the interaction of each of the following ligands with a single
d-block metal atom such as cobalt? (8
a) C ₂ H ₄
b) cyclopentadienyl c) C_6H_6
d) cyclooctadiene
e) cyclooctatetraene
Page F of 9

1.3 Give the electron count of: a) $[Ni(\eta^3-C_3H_5)_2]$ b) $[Co(\eta^3-C_3H_5)(CO)_2]$	(4)
Question 2 2.1 Decide which type of intermolecular forces is involved in: a) O_2 b) CH_3OH c) N_2 in H_2O	[30] (6)
2.2 The molar enthalpy of vaporization of methanol is 35.2 kJ/mol at 64.6 $^{\circ}$ C. How much energy Is required to evaporate 1.00 kg of methanol at 64.6 $^{\circ}$ C?	/ (3)
2.3 Gold has a face centered unit cell and it's density is 19.32 g/cm³. Calculate the radius of gold atom.	d (10)
2.4 Iron has a density of 7.8740g/cm^3 and the radius of an iron atom is 126 pm. Verify that solid iron has a body-centered cubic unit cell.	d (10)
2.5 A soft waxy solid melts over a temperature range from 120 $^{\circ}$ C to 130 $^{\circ}$ C. It doesn't dissolve in water and does not conduct electricity. These properties are consistent with its identity as a solid.	(1)
Question 3 Define Hard and Soft acids and bases (HSAB) theory. How would you characterize hard acids and bases?	[8]

THE END

GOODLUCK

USEFUL CONSTANTS:

Gas constant, R = $8.3145 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} = 0.083145 \text{ dm}^{3} \cdot \text{bar} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} = 0.08206 \text{ L atm mol}^{-1} \cdot \text{K}^{-1} = 0.08206 \text{ L}$

 $1 \text{ Pa} \cdot \text{m}^3 = 1 \text{ kPa.L} = 1 \text{ N} \cdot \text{m} = 1 \text{ J}$

1 atm = 101 325 Pa = 760 mmHg = 760 torr

Avogadro's Number, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Planck's constant, $h = 6.626 \times 10^{-34} \text{ Js}$

Rydberg constant, $R_h = 2.18 \times 10^{-18} \text{ J}$

Speed of light, $c = 2.998 \times 10^8 \text{ ms}^{-1}$

PERIODIC TABLE OF THE ELEMENTS

1																	18
1																	2
H	2											13	14	15	16	17	He 4.00260
3	4											5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
6.941	9.01218											10.81	12.011	14.0067	15.9994	18.9984	20.179
11	12											13	14	15	16	17	18
Na	Mg						-					Al	Si	P	S	Cl	Ar
22.9898	24.305	3	4	5	6	7	8	9	10	11	12	26.9815	28.0855	30.9738	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co.	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983	40.08	44.9559	47.88	50.9415	51.996	54.9380	55.847	58.9332	58.69	63.546	65.38	69.72	72.59	74.9216	78.96	79.904	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.4678	87.62	88.9059	91.22	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.41	114.82	118.69	121.75	127.6	126.9	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.905	137.33	174.967	178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967		204.383	207.2	208.908	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112		114		116		118
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq		Uuh		Uuo
(223)	226.025	(260)	(261)	(262)	(263)	(264)	(265)	(268)	(269)	(272)	(269)						

Lanthanides;	57	58	59	60	61	62	63	64	65	66	67	68	69	70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
	138.906	140.12	140.908	144.24	(145)	150.36	151.96	157.25	158.925	162.50	161.930	167.26	166.934	173.04
Actinides:	89	90	91	02	93	94	05	96	97	98	99	100	101	102

89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
227.028	232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)